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Abstract In this study, the quantitative structure–prop-

erty relationship method is applied to predict the enthalpy

of fusion of pure chemical compounds at their normal

melting point. A genetic algorithm-based multivariate lin-

ear regression is used to select the most statistically

effective molecular descriptors for evaluating this property.

To propose a comprehensive and predictive model, 3,846

pure chemical compounds are investigated. The root mean

square of error and the average absolute deviation of the

model are equal to 2.57 kJ/mol and 9.7%.
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Introduction

One of most important physical properties is the enthalpy

of fusion at normal melting point (DfusHtm). The property is

defined as the enthalpy change in the transition from the

most stable form of solid to liquid state at the normal

melting point.

The DfusHtm has many important applications. It is an

important property applied in energy balances computa-

tions when solid–liquid phase change happens in the

chemical or petrochemical processes under study. It is

also related to the molecular packing in crystals and can

be useful in correcting thermochemical data to a standard

state when combined with other thermodynamic proper-

ties [1]. It is also used to calibrate the commercially

manufactured testing equipment such as the differential

scanning calorimeters applied for the determination of the

temperature and the amount of energy transfers during

phase changes [2]. Another important application of

DfusHtm would be in estimation of other physical prop-

erties. There are several reliable methods developed for

estimation of solubility of compounds in various solvents

based on DfusHtm [3].

There are several methods applied for experimentally

measuring the DfusHtm that can be categorized into two

main groups; calorimetric methods and non-calorimetric

methods. Of calorimetric methods, we can refer to adi-

abatic [4–10], isoperibol [11–16], isothermal [17–20],

heat conduction [21–27], drop [2] and differential scan-

ning calorimetry [2], and differential thermal analysis

[2]. Of non-calorimetric methods, we can refer to cryo-

scopic [2], vapor pressure, and enthalpy of solution

methods [2].

There are several methods for estimation of DfusHtm.

The first attempt to propose a model for estimation of

DfusHtm was done by Bondi [28]. He used the relation

between enthalpy of fusion (DfusHtm) and the entropy of

fusion at the normal melting point (DfusStm). These two are

related to each other using the Eq. 1.
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DfusHtm ¼ tmDfusStm ð1Þ

Bondi [28] proposed application of total entropy of

fusion at 0 K (DfusS
tot
0 ) instead of DfusStm in Eq. 1. The

equality of DfusS
tot
0 and tmDfusStm is true just for those

compounds that do not have solid–solid transitions. For the

compounds, the Eq. 1 is a good idea to give an estimation

for DfusHtm. However, DfusS
tot
0 is much greater than DfusStm

for the compounds that have solid–solid transitions. This

idea has been recently applied to estimate the total phase

change enthalpy of more than 1,000 pure compounds [1].

In another attempt, Marrero and Gani [29] developed

several Group Contribution methods (GC). They proposed

a first order, a second order, and a third order group

contribution methods to estimate the DfusHtm. Their third

order GC methods showed the best results over 741

compounds they studied. The model showed standard

deviation, average absolute error, average absolute

deviation of 3.65, 2.17 kJ/mol, and 15.7%.

The quantitative structure–property relationship (QSPR)

method was also applied to predict the DfusHtm. The QSPR-

based methods were often used to predict the DfusHtm of

particular chemical families of compounds [30–34]. These

methods are not reviewed in this study because they are

proposed for especial purposes and cannot be applied for

general compounds.

The GC methods have been used for determination of

various physical properties [35–49]. Recently, one of the

authors of this paper proposed a new GC type method for

determination of the DfusHtm [48]. The method is a com-

prehensive an accurate one, however, it needs a large

number of parameters to give an estimation for DfusHtm

[48].

In this study, the QSPR is applied to develop a com-

prehensive model for estimation of the enthalpy of fusion

of pure compounds at their normal melting points. QSPR

implements the chemical structure based parameters called

molecular descriptors to develop a model.

Materials and methods

Materials

To develop a comprehensive, it is required to have a large

experimental data set. The accuracy and reliability of

models for estimation of physical properties, especially

those dealing with large number of experimental data,

directly depends on the quality and comprehensiveness of

the applied data set for its development. The aforemen-

tioned characteristics of such a model include both diver-

sity in the investigated chemical families and the number

of pure compounds available in the data set. In this study,

the database prepared by Yaws [50] was implemented,

which is one of the most comprehensive sources of phys-

ical property data for chemical species, e.g., DfusHtm. The

DfusHtm for 3,864 compounds found in the database and

used as main data set in this study.

Computation of molecular descriptors

In QSPR theory, chemical structure of a compound is

encoded into some parameters called ‘‘molecular descrip-

tors.’’ The molecular descriptors are basic molecular

properties of a compound [49, 51–72]. Each type of

molecular descriptors is related to a specific type of inter-

action between chemical groups in a particular molecule

[49, 51–72]. There are many software packages used for

the computation of molecular descriptors of any desired

chemical structure. A review of these software packages

can be found elsewhere [51]. In this study, one of the most

widely used software named ‘‘Dragon’’ is used [73]. This

software is able to calculate more than 3,000 molecular

descriptors for any desired chemical structure. Since the

values of many descriptors are related to the bond lengths,

bond angles, etc., each chemical structure is optimized

before calculating its molecular descriptors. For doing this,

chemical structures of all 3,864 pure compounds have been

drawn in Hyperchem software [74] and optimized using

the MM? molecular mechanics force field. Finally, the

molecular descriptors have been determined using the

Dragon software [73].

Generating model

Having calculated the molecular descriptors from the

optimized chemical structures of all investigated com-

pounds, a linear equation is presented that is able to rep-

resent/predict the desired property with the least number of

variables as well as the highest accuracy [49, 52–72]. In

other words, the problem is to find an optimal subset of

variables (most statistically effective molecular descriptors

on DfusHtm) from all available variables (all molecular

descriptors) that are able to calculate the DfusHtm with the

least possible deviation from the experimental values. A

generally accepted method for this problem is genetic

algorithm-based multivariate linear regression (GA-MLR)

[49, 52–72, 75–77]. In this method, the genetic algorithm is

applied to select best subset of variables based on an

objective function as performed firstly by Leardi et al. [76].

Fitness functions such as R2, adjusted R2, Q2, ‘‘Akaike’’

information content (measure of the goodness of fit of an

estimated statistical model) etc. are generally applied as

objective function in GA-MLR technique [75, 77]. The

‘‘RQK’’ fitness function is a novel one for model searching

proposed to avoid undesired model properties such as
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chance correlation, presence of noisy variables in the

models, and other model pathologies causing lack of model

prediction capability [49, 52–72, 75, 77]. Besides, RQK is

a constrained fitness function based on QLOO
2 statistics

(leave-one-out cross validated variance) and other four

tests that must be fulfilled contemporarily. This function is

defined as follows [77]:

Q2
Loo ¼ 1�

Pn
i¼1 ðyi � ŷicÞ2
Pn

i¼1 ðyi � �yÞ2
ð2Þ

where yi is the DfusHtm for ith compound, �y is mean value

of DfusHtm for all of the investigated compounds, and ŷic is

response of ith object estimated by a model obtained

ignoring the value of the related object. Todeschini et al.

[77] proposed that the preceding equation should be

subjected to the following constraints:

DK ¼ KXY � KX [ 0 ðQuick ruleÞ ð3Þ

DQ ¼ Q2
LOO � Q2

ASYM [ 0 ðAsymptotic Q2 ruleÞ ð4Þ

RP [ 0 ðRedundancy RP ruleÞ ð5Þ

RN [ 0 ðOverfitting RN ruleÞ ð6Þ

It should be noted that the RQK function is used in this

study as the fitness function. The results of application of

GA-MLR with RQK fitness function have been satisfactory

in previous studies [43, 49, 52–72].

Of particular interest is the fact that the main data set

should be divided into two sub-data sets before per-

forming the GA-MLR computational steps including the

‘‘Training’’ set and the ‘‘Test (prediction)’’ set. In this

article, these sets are defined as follows: the ‘‘Training

set’’ is used to generate the model. The ‘‘Test set’’ is used

to test the prediction capability of the obtained model.

The process of division of main data set into three sub-

data sets is performed randomly. For this purpose, about

80 and 20% of the main data set are randomly selected

for the ‘‘Training’’ set (3,092 compounds), and the ‘‘Test’’

set (772 compounds). The effect of the allocation percent

of the two sub-data sets from the data of main data set on

the accuracy of the model has been already discussed in

previous studies [53].

Several validation techniques are generally used in the

QSPR methods to obtain a valid and reliable model. The

most widely used techniques have been presented by

Todeschini et al. [75]. The bootstrapping, y-scrambling and

external validation techniques are used in this study. Using

the bootstrapping technique, the original size of the data set

(n) is preserved for the ‘‘Training’’ set by the selection of

n objects with repetition. In this procedure, the training set

usually consists of repeated objects and the evaluation

set of the objects left out [49, 52–72, 75, 77]. The model

is calculated on the ‘‘Training’’ set and responses are

predicted on the evaluation set [43, 49, 52–72, 75, 77]. All

the squared differences between the true response and the

predicted response of the objects of the evaluation set are

collected ‘‘PRESS’’. This procedure of building ‘‘Train-

ing’’ sets and evaluation sets is repeated thousands of time.

‘‘PRESS’’ is summed and the predictive capability is cal-

culated [43, 49, 52–72, 75, 77].

The y-scrambling technique is adopted to check the

obtained models with chance correlation. This test is per-

formed by calculating the quality of the model (usually the

Q2) modifying the sequence of the response vector by

assigning to each object a response, randomly selected

from the true responses. If the original model has no

chance correlation, there is a significant deference in the

quality of the original model and that associated with a

model obtained with random responses. The procedure is

repeated several hundreds of time [43, 49, 52–72, 75, 77].

External technique is a validation method, where a test

is retained to perform a further check on the predictive

capabilities of a model obtained from a ‘‘Training’’ set and

that optimized by an evaluation set [49, 52–72, 75, 77].

Results and discussion

The most accurate multivariate linear equation is obtained

following the presented procedure. For obtaining this

equation, the best molecular descriptor model is obtained at

the first place. Later, the best two molecular descriptors

model are determined [49, 52–72, 75, 77]. This procedure

is repeated to achieve the most accurate three, four, five,

etc., molecular descriptors models. It is found that the most

accurate multivariate linear model has seven parameters

because further increase in the number of molecular

descriptors does not lead to any considerable effects on the

accuracy of the model. The final equation and its statistical

parameters are presented as follows:

DfusHtm ¼ �3:04644ð�0:13585Þ
þ 1:53111ð�0:00444ÞSp

� 2:3318ð�0:05299ÞGGI1

þ 7:88627ð�0:24321ÞSEige

� 0:48091ð�0:03191ÞRDF030v

þ 9:41134ð�0:3597ÞnRNH2

þ 5:5341ð�0:21958ÞO� 057

þ 0:04041ð�0:00413ÞTPSA(Tot) ð7Þ

ntraining ¼ 3092; ntest ¼ 772;

R2
training ¼ 0:9883; R2

test ¼ 0:9854;

Q2
LOO ¼ 0:9877; Q2

EXT ¼ 0:9887; Q2
LTO ¼ 0:9804;

s ¼ 2:57; Q2
BOOT ¼ 0:9877; a ¼ �0:012; F ¼ 35772:55
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RQK function parameters

ðDK ¼ 0:088; DQ ¼ 0:000; RP ¼ 0:016; RN ¼ 0:000Þ

where ntraining and ntest are the numbers of compounds

available in training set and test set, respectively. ‘‘Sp’’ is a

‘‘constitutional descriptor’’ defined as sum of atomic po-

larizabilities (scaled on carbon atom). It is a measure of

polarity of a molecule. As expected, when it increases,

DfusHtm increases. ‘‘GGI1’’ is topological charge index of

order 1. ‘‘topological charge indices’’ were proposed to

evaluate the charge transfer between pairs of atoms. As

stated by Todeschini et al. [75], it is a measure of molec-

ular branching in a molecule. So, increase in molecular

branching results decrease in DfusHtm. ‘‘RDF030v’’ is

defined as Radial Distribution Function-3.0/weighted by

atomic van der Waals volumes. It is a measure of sphericity

of a molecule. The more sphericity in a molecule, the lower

DfusHtm. ‘‘nNRNH2’’ is number of primary amine groups

(aliphatic amines). It is a group count descriptor. ‘‘O-057’’

is phenol or enol or carboxyl OH group. It is an atomic

fragment. ‘‘TPSA(Tot)’’ is defined as topological polar

surface area using N, O, S, P polar contributions. In gen-

eral, the latter three molecular descriptors (‘‘nNRNH2,’’

‘‘nNRNH2,’’ and ‘‘TPSA(Tot)’’) disclose some sort of

hydrogen bonding effects in a molecule. The model shows

an DfusHtm increase when these three descriptors increase

in a molecule.

For more information about procedure of calculation

of these molecular descriptors from chemical structure of

a compound, please refer to the Dragon software user’s

guide [73].

For testing the validity of the model, bootstrap technique,

y-scrambling, and external validation techniques are used

[49, 52–72, 75, 77]. The bootstrapping is repeated 5,000

times. Besides, y-scrambling is repeated 300 times. As can

be seen, the difference between Q2
LOO, Q2

BOOT, Q2
EXT, and R2

demonstrates the predictive and accuracy of the proposed

model. The intercept value of the y-scrambling technique has

low value (a ¼ �0:011) that reveals the validity of the

model. In addition, the values of four constraints of the model

are equal or greater than zero which shows that this model is

valid and is not chance correlation.

The predicted DfusHtm values by Eq. 7 in comparison

with the experimental values [50] are presented in Fig. 1.

The predicted DfusHtm values for the investigated chemical

compounds, the calculated descriptors, and status of all

compounds (‘‘Training’’ or ‘‘Test’’ sets) are presented as

supplementary information.

Conclusions

In this study, a QSPR model was presented for determi-

nation of the enthalpy of fusion of the chemical compounds

at their normal melting points (DfusHtm). The proposed

model is a multivariate linear one consisting seven vari-

ables (molecular descriptors), which is developed based on

the experimental data of 3,864 chemical compounds. The

molecular descriptors were selected using GA-MLR [49,

52–72, 75–77] technique and are calculated based on the

chemical structure of molecules. The obtained results show

that the presented model is simple, comprehensive, and

accurate. Because the model were developed using the

largest database of the experimental values [50] of DfusHtm,

the range of application of this model is wide and it may be

used for determination of other chemical families exclud-

ing those investigated in this study.
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